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The search for a definition of distances over sets of skeletal analogs (identified to G-Hilbert 
spaces of vector ligand parameters) is initiated from the algebraic formulation of the constant 
of stereogenic pairing equilibria (pairing product). A basic definition equation is devised from 
thermodynamical speculations. The equation is proved to have always a single potential dis- 
tance solution Dp as soon as the pairing product is discriminating. The equation of Dp is con- 
structed in order to satisfy three consistency requirements: complete G-invariance (arbitrary 
orientations selected to describe skeletal analogs do not affect the value of Dp); extension prop- 
erties (Dp coincides with two standard completely G-invariant distances or with the Euclidean 
distance in borderline cases); all the distance properties except, perhaps, the triangular inequal- 
ity. The latter point remains challenging in general, and is computationally verified in some 
examples. 

1. I n t r o d u c t i o n  

In current  molecular  representations, constituting a toms are located at sites o f  
a symmetr ized skeleton. Chemical t ransformations take place either at the level o f  
the skeletal geometry  (rearrangement,  condensation,  etc.) or at the level o f  the 
ligand distr ibution (isomerization, substitution, etc.). In quanti tat ive approaches,  
the consti tuting a toms are characterized by ligand parameters ,  and the structural  
modif icat ion brought  about  by the assignment of  these parameters  can be formally 
quantif ied through the notion of  "fuzzy symmetry  subgroup"  [1]. Trea tment  of  
stereogenic pairing equilibria between skeletal analogs has received a fairly consis- 
tent algebraic formulat ion [2,3]: the trend of  the results proved hitherto p rompts  
us to explore further the mathematical  scope addressed by the basic hypotheses  
below: 

(1) Ske l e ton  symmet r i za t ion :  skeleton of  interacting molecules are identically sym- 
metrized in a realistic manner.  
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(2) Skeleton overlap pairing: the geometry of the paired species is the juxtaposition 
of the two skeletons, in such a manner that they are parallel and close to each 
other. 

(3) Scalar product form of the ligand interactions: only one kind of pairwise ligand 
interactions occurs, and the corresponding energy is proportional to a scalar prod- 
uct between real or vector ligand parameters. 

When two molecules are supposed to pair under such conditions, the so-called 
chemical pairing (constant K) is shifted towards homo-pairing for attractive-type 
interactions in several general situations, and hetero-pairing has never been found 
to be favoured in any particular situation hitherto considered. In addition, the shift 
vanishes only if the molecules are chemically equivalent. On the very outset, the 
study is restricted to pairing equilibria where K satisfies 

(a) K >~ 1. 

(b) K = 1 only if the paired species are chemically equivalent. 

The corresponding function K(u, v) is then called a "discriminating pairing 
product" [4]. These properties of a discriminating pairing product call to mind two 
of the properties of a distance D, namely: 

(a') 0 ~<D(u, v), 

(b') D(u, v) = 0 ~ u = v. 

Efforts are now made to exhibit a distance Dp on E/G (set of skeletal analogs 
with a given skeleton symmetry group G) from a discriminating pairing product 
defined on (E, d : G) (E = set of skeletal analogs with all possible orientations gen- 
erated by the skeletal symmetry group G; d = Euclidean distance of the ligand 
parameter space). Dp might also be considered as a completely G-invariant distance 
on E [5]. 

Standard completely G-invariant distances on metric spaces (E, d) are defined 
by 

V ( u , v ) e E  2, O ~ ( u , v ) =  Inf d(gu, hv) 
gEG,h~G 

and this notion is related to the notion of discriminating pairing product in the 
limitp = - a / k T  -~ oo. Indeed, proposition 1 has been proved previously: [4]. 

P R O P O S I T I O N  1 

Whenp -~ ~ ,  Kp converges to a discriminating pairing product Koo: 

Koo(u, v) = lim Kp(u, v) = exp [Inf d2(gu, v)] 
p ~ o o  LgeG J ' 

where 
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Kp(u,v) = (faexp[-Pd2(gu'u)] dg)~/p (faexp[-Pd2(gv'v)l dg)~/p 

(f6exp[-P d2(gu, v)] dg) 2'p 
Moreover, the limit of ~ when p--+ + oo, i.e. the function Doo: E x E--+R, 
(u, v) -+ x/In Koo (u, v) = Infg ~G d(gu, v) is a completely G-invariant distance on E, 
i.e. a distance on the set E/G of all the orbits. 

The distance Doo is the limit for q -+ + oo of the series 

1 Dtq(U'V) = 1 q l/q ' q > l .  

/ satisfies all the properties of a distance on E/G but the Any positive function Dq 
triangular inequality. However, not only the limit D~(q --+ + cx)), but also the limit 
D~(q---~-1) satisfy the triangular inequality and are completely G-invariant 
distances 

PROPOSITION 2 
Under the preceding notations, D' 1 

(E, d). 

Proof of the triangular inequality: 

V ( u , v , w ) e E  2, Dq(U,v)+Dq(W,V) 

1 = + 

(j~G [d(gl v)] q dg) I/q 

Dq(U, v) + Dq(w, v) 

1 
4 

Thus, 

VhEG, 

is a completely G-invariant distance on 

\ 1/q " 

1 q 1 ,q .  

The triangular inequality of the q-norm of the 1/d function produces 

1 1 q 1/q 
V'q(U,V)-I-V'q(W,V)~ P Q~G [d(2, v) t- d(gh-w,v)'] dg) , 

where 

( fa[~/  1 ]q )l/q fG[ l .]q 
P = (gu, V) dg " d(ghw, v) dg)l/q" 
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Since d is a distance, d(gu, v) + d(ghw, v) >1 d(gu, ghw) = d(u, hw): 

1 ( f  [ d(u, hw) q 1/q Otq(U,V) q- Otq(W,V)~ ~ dg) 

Let us calculate the ratio R of the right term to D~(u, w): 

1 1 ( ~  r d(u, hw) ]q )l/q 
R = D,~(u, w) "p" Ld(gu, v)- d(ghw, v)J dg 

---- (f6 [d(g 1 , w)] qdg ) 1/q l "P'(fG L)(gU,  : d(u, hw) v)J ]q dg) 1/q 

This can be written for any operation h, and in particular for the element h giving 
rise to the supremum of the integral wherein it takes place: 

(jfG[ 1 ] q )l/q 1 ,~ f f [  d(u, hw) .]q )I/q 
R = ~/(u,hw) dh . - ' a u p  . . . .  dg . p heo k,J~ Ld(g~, v). d(ghw, v) 

The function "SUPh e G" is a p-norm limit forp = oo. Therefore, the H61der inequal- 
ity for conjugate exponents (p, q) satisfying lip + 1/q = 1 can be applied as soon 
asq = 1: 

1 fG 1 / a  d(u, hw) R~>--  p d(u, hw) d(gu, v) .  d(ghw, v) dg dh 

p d(gu, v) d(~v, v) 

Thus, ifq = 1: 

- 1 .  

R - D~(u, w) p /d(gu, v).  d(ghw, v dg >1 1. 

Consequently, 

1 /~ d(u, hw) 
p" ~,  d(gu,-~) - d ~ w ,  v) dg>~D'l(u'w)" 

The triangular inequality for q = 1 and proposition 2 follow. D~ is opposite to D~ 
in the following sense: whereas in D'oo, the weights of the d(gu, v) equal 0 or 1, in 
the distance D~, the relative weights of the d(gu, v)'s are smoothed off. The concern 
resides in the design of completely G-invariant distances such as D~ where all the 
"covering gaps" (i.e.: d(gu, v), d(gu, u) and d(gv, v), g e G) occur, without neglect- 
ing a priori all of those which are not the smallest ones. A possible distance 
Dp(u, v) with p < oo is sought as a solution of some functional equation involving 
the discriminating pairing product Kp: 
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= K ; .  

Even if the distance d is not yet supposed to be Euclidean, the following properties 
are required in order to devise a consistent equation: 

( i) G-invariance requirements: 
(a) Dp is completely G-invariant, i.e. the functional equation linking Kp and Dp 

must preserve the complete G-invariance of Kp. 
(b) VueE, VgeG, Dp(u, gu) = O. 

( ii) Extension requirements: 
(a) Dp is an extension of the metric distance d: if u0 is invariant to all the operations 

of G, then: VuEE, Vge G, Dp(u, u0) = d(gu, u0) = d(u, u0). In particular, i f E  
is a normed vector space: Dp(u, 0) = HuH. 

(b) Whenp -+ o% Dp tends to the standard completely G-invariant distance D~. 
(c) Whenp -+ 0, Dp tends to the "smooth" completely G-invariant distance LY 1 . 

(iii) Distanceproperties on E~ G: 
(a) V(u, v) e E 2, 0 < Dp (u, v). 
(b) V(u, v) ~ E 2, Dp(u, v) = 0 ~ 3h ~ G, v = gu (converse of(ib)). 
(C) V(U, V, W) ~ E 3, Dp (u, W) ~< Dp (u, v) + Dp (v, w). 

2. Thermochemical  speculations 

Consider the chemical equilibrium (E) occurring under the conditions men- 
tioned above: 

2AB-~ AA + BB, K - [BBI[AAI , 
[AB] 2 (E) 

each canonical set of copies of an observable species, say AB, is a set of molecular 
states {AiBj}. The equilibrium is now formally regarded as a set of elemental equili- 
bria between states of the involved paired species: 

(AiBt + AkBj ~- ) AiBj + AkBt ~ AiAk + BjBj : Kii,kt. 

The search for a quantity D allowing the equilibrium (E) to be defined as a "super- 
position" of these elemental equilibria, is undertaken from the equation: 

K =  e x p [ -  A-~-~- 1 Z [K'J,kt]z~/aus' (N:  normalizing factor) 
ij,k,l 

= 1  exp E(BjBx) N ij~.k, ' [-  ~----~{E(AiAk) + 

-E(AiBj) - E(AkBx) } ~ ]  . 



274 R. Chauvin / Chemical algebra. III 

The Ko.,kt'S express the relative abundances of AiAk,  BjBI, AiBj ,  and AkBl  in the 
whole equilibrium (E). D 2 represents an energy defined with respect to the lowest 
energy state on one side of the equilibrium, say the right-hand side AA + BB, 
and takes into account the competitive cross-pairing process: AiBt +AkBj  

AiBj + AkBt. Coefficients aij,kt are thus required to weight the Kt/,kt's in K. They 
are defined by 

aij,kl -~- (OtilOZkj) 1/2 

with ai# = Eo(AA) + Eo(BB) - 2E(diBt), akj = Eo(AA) + Eo(BB) - 2E(A~Bj), 
where E0 (AA) and Eo (BB) denote the ground states of the homo-pairs. 

Although D is related to the standard free energy of the equilibrium, no clear 
macroscopical interpretation is claimed: D E represents a mean cohesion energy, 
averaged over molecular states, of a species AB with respect to disproportionation 
products AA and BB. These definitions are applied to pairing equilibria of skeletal 
analogs represented by vectors u and v" 

2u/v u/u + v/v. 

The states (u/v)i., (u/v)k b (u/u)i k, (v/v).t correspond to "stereoisomeric states" g J 
of observable pairs AB = u/v,  AA = u/u ,  B B -  v/v. Under the three basic 
hypotheses used in the algebraic treatment of stereogenic equilibria, the energy of 
paired species is expressed as a function of vector ligand parameters. It follows that 
the thermodynamic equation of D takes a form (given in theorem 1 below) suitable 
for a systematic study. 

3. Defini t ion equat ion  

In what follows, p is a positive number which is supposed to have the thermody- 
namic significance: p ---- - a / k T ,  with a < 0. 

THEOREM 1 
Let Kp be a discriminating pairing product on a metric space (E, d : G), and let 

us consider the equation of an unknown function Dp: E x E ~ R+: 

~Su,v(Dp(u , v))  = [Kp(u, V)] p (]E) 

with 

°,,,<x,--issi 
[2d2(gu, lv) +d2(ku, hv)i d2 (~, ~)-d2(lv, hv) ] 

x exp d(gu, hv)- d(ku, Iv) x2 

x dg ah dk al, 
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Kp p(u,v) = fGexpl--2d2(gu,  u)] dg. fGexp[--Pd2(gv, v)] dg 

If E is a complex vector space (E is a G-Hilbert space), then d is Euclidean and eq. 
(E) has a single solution Dp. Furthermore, Dp fulfills the afore-mentioned consis- 
tency requirements (i), (ii) and (iii), except, perhaps, the triangular inequality 
(iiic) [6]. 

Notice." 
Under such conditions, D? fullfills at least as many requirements as D~+ 1 (pro- 

position 2). However, contrary to p in Dp, q has no thermochemical meaning in 
1 Dq. 

Proof 
The following notation is adopted: 

(alb) V(a, b) EE 2 cos(a, b) = Re 
I la l l"  Ilbll  " 

Owing to the isometric character of the action of G on E, the integral over G 4 boils 
down to an integral over G3: 

= f f f exp[pcos(gu-hv, - dg dh 
CO 

We aim at proving that the map 4~: R+ ~ [1, + ~ ] ,  4~(x) = ~u,v(x/x) is biunivocal. 
Let us first notice that ~(0) = 1. 

• Vx ~ R+, • ,(x) =fHpcos(g -hv, k u -  v) 
cO 

× exp[p cos(gu - hv,/cu - v) x] dg dh dk 

and 

CO 

• t ( 0 ) = p / / /  Re [ -(gulku) + (hvlv) - (gulv) - 

G 3 

Successive variable changes g' = h-lg, h' = hg j, h" = h'- lk  and h" = h"-lg '-1 lead 
to 
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• '(0) = p Re[I(Juu + Jw + Juv - Jvu)], 

where 

dg' dk _ de vii ~2/ 
I = f f Ilg'u- vii • I1~- vii - (fc IIg~- 

Jab = ~ ( g a l b )  dg (a, b --- u, v).  

The following proposition holds [1]: 

PROPOSITION 3 
Let G be a compact group, endowed with its Haar  measure dg. Let 

E = ml Vl @ .. .  @mr Vr be the expansion of  E into irreducible representations. The 
character of  Vi is noted as Xi and its degree is denoted as ni. Let ~Pi: V-+miVi  be 
the projector of  E onto the isotypical representation mi Vi. Then 

Vg6G,  V ( a , b ) ~ V  2, fa(ghalhb)dh= F_(~Yial--~ib). xi(g ). 
i= 1 Hi 

By integration over g: Jab = fo(galb) dg= (~Pl (a)[~l (b)), wherein ~Px denotes the 
projector onto the unit representation (nl = 1). Therefore, 

Juu + Jvv + Juv - Jvu = I I ~ ( u ) l l  2 + [ l~ l (V) l l  2 + (0~l(U)l~(v))  

+ (~x(v)l~Pl(U)) = II~a(u) - 0~l(v)ll 2 

Consequently, 

~t(0) = p,[~l (u) _ ~1 (v)[[2 (~G dg ) 2  
Ilgu-vii >~o, 

• .x..+ +,<.,-ISS..oos.<.-,.,v, 

x exp~ cos(~i - hv, ku - v) x] dg ah dk~O. 

Thus, @' is an increasing function of x over R+. Since ~'(0)>_-0, ~'(x) is always 
positive, and @ is an increasing function over R+. But ~(0) = I, and • is an injec- 
tion from R+ into [1, +oe]. 

On the other hand, when x--+ + oo, ~"(x) is equivalent to 

Sup p2 cos2(gu _ hv, ku - v)exp[p cos(gu - h v ,  ku - v) x] = p2epX. 
( g,h,k ) E G 3 
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Therefore, when x--~ + oo, ~"(x) --~ + oo. 
It follows that when x-+  + c~, ~(x) -+ + c~, and ~ is surjective from R+ onto 

[1, + ~ ] .  
Kp is supposed to be a discriminating pairing product. In particular, Kp >>. 1. 

Since • is biunivocal from R+ into [1, +oo], eq. (E) allows a function D r to be 
unequivocally defined. For the same reason, D p ( u , v ) = 0  if and only if 
Kp(u, v) = 1, i.e. if and only if3g ~ G, v = gu (Kp is discriminating). 

The symmetry of eq. (E) is transferred to its solution Dp, and Dp is completely 
G-invariant. 

Furthermore, it is easily checked that if u belongs to the unit representation of 
G (Vg ~ G, gu = u), then Vv ~ E, Dp(u, v) = flu - vii. Likewise, whenp ~ + co, the 
solution of (E) tends to the standard completely G-invariant distance defined by 
(proposition 1): 

V(u ,v )eE  2 Doo(u,v) = Inf Ilgu-hvll = I n f l l g u - v l l .  
gEG,hEG g~G 

At last, expanding ~u,v(D0(u, v)) 1/p and [Kp(u, v)] p in the neighborhood ofp  = 0, 
the limit equation (E) provides a solution Do which coincides with/Yl: 

1 
D0(u,  v) = Z¢~ (u, v) - [ de 

Jc d(gu, v) 

The map "Dp(u, v) = x/lnKp(u, v)" is a distance on E/G only if p = +co. For 
p < + ~ ,  this map does not fulfill the condition (ii.a) and the complete definition 
equation (E) is needed. Nevertheless, Dp is always greater than In Kp. More 
precisely: 

PROPOSITION 4 

Under the same hypothesis as in theorem 1, the solution Dp of eq. (E) satisfies 
the following inequalities: 

(fG dg )2 O~(u '  v) " I I~l(u  - v)l12 " l i e u - v i i  ~< In gp(u, v) ~<D~(u, v). 

Proof 
The notations of the proof of theorem 1 are retained. 

• u,v(Dp)~< Sup exp[pcos (gu-hv ,  k u - v ) D ~ ( u , v ) ]  =exp[pD2(u,v)].  
(g,h,k ) ~ G 3 

On the other hand, the exponential function is convex: 

~u,v(Dp)>/exp[pD~(u,v) f f f cos(gu-hv, ku-v) dgdhdk. 
G 3 
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Using a result of the proof of theorem 1, 

qSu,v (D p) i> exp[D2(u, v)4~' (0)1 

= e x p  (u,v) -p .  II:Pl(U- v)ll 2- Ilgu--vll " 

From eq. (E), p In Kp (u, v) = In ~u,v (Dp (u, v)), and the proposition follows. [] 

In a first approach, the eventual verification of the triangular inequality by the 
solution Dp necessitates the explicit expression ofDp(u, v). However, the analytical 
resolution of (E) is not possible in the general case. Nevertheless, in borderline 
cases, partial resolution can be achieved. The corresponding mathematical study 
has no direct chemical implication, but it argues in favour of the consistency of the 
general model. 

Simplification of the problem can be achieved by restriction: 

• to simple groups (G = {e, or}) and simple representations (of degree 1); 

• to subsets F of E; 

• to a local differential analysis (v = u + du) [7]. 

4. Representa t ions  of  the group g2 : {e, a} 

It has been proved elsewhere that pairing products on all g2-Hilbert spaces E 
are discriminating [2,4]. 82 has only two irreducible representations (of degree one): 
the unit representation V1 with the character X1 (X1 (e) = X1 (a) = 1), and the repre- 
sentation V2 with the character X2 (x2(e) = 1, X2(a) = -1) :  E is split as a direct 
sum: E = rnl Vl@m2V2. A vector u in E is written as u = ul@u2, with ul Eml gl 
and u2 e mE V2 (eul = ul = crul ; eu2 = u2 = -au2). It is easily verified that 

K (u, v) = 

(cosh[Pllu2112 ] cosh[Pllv2[12] ~ lip 
= exp[-lllul - viii2] k, cosh2[p(u2lv2) 21 ] 

On the other hand, 

~u,v(Dp) =1 ~ e x p [ p c ° s ( g u - h v ,  k u - v ) @ ( u , v ) ] .  
g,h,k=e,o" 

i s  c a l c u l a t e d  by using t h e  r e l a t i o n s  e u l  = U l ,  e u 2  --- u2 ,  f r i l l  = U l ,  01.12 = - -U2:  
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Cu,v(Dp(u,v/) = )__S 
g,h,k==kl 

× exp 
p [lUl - -  V1112 + Re(gu2 - hv2[ku2 v2) O2(u, v) 

~/ l lul  - viii 2 + lieu2 - hv2112 v/ l lu l  - viii 2 + 11/~2 - v2112 

No analytical solution of the equation "~u,v(Dp(u, v)) = Kp(u, v)" is available in 
the general case. 

(1) ml = O: E = m2 V2: 

Calculations lead to: 

cosh[pll ull 2] cosh[p II vii 2] 
gpP(u, v) = cosh2[p Re(ulv)] ' 

I lu- -  ~11T II-u--+ vii 

• By restriction to the sphere Fr of radius r and centered at 0, the equation is 
resolved: 

Dp(u, v) = ~ 1 invcosh 2c°sh2 pr2 - l ] .  
p cosh2(pr 2 cos(u, v)) 

The triangular inequality has been numerically verified for m2 = 1, E = C and for 
Fr --- F1 (half-circle of unit radius in the complex plane wherein curvilinear coordi- 
nates o fu  boil down to a single number 0u e [0, 7r[, and: cos(u, v) = cos(0u - 0v)). 

• If m2 = 1, then E ~ C is an irreducible representation of g2. By restriction to the 
Euclidean (real) subspace F = IR, the action of 82 is defined by: Vx e IR, ex = x, 
crx = -x .  Again, the equation can be resolved explicitly: 

; )  invcosh [ c°shpx2 c°shpy2] 
V(x,y) E]R 2 , Dp(x,y)= [ ~osh2-- ~ ] .  

The triangular inequality has not been proved analytically, but was always satis- 
fied in an iterative computation for 0 ~<x~< 10, 0 ~<y ~< 10, 0 ~<z <~ 10, with incre- 
ments A~c = Ay = Az = 0.05. 

Thus, it is very likely that Dp is a distance on R/$2 = R+ or R_. Dp does not 
depend explicitly on the Euclidean distance "[a - bl", unlike distances 6 defined by: 
6(x,y) = I f ( x ) - f ( y ) [ ,  where f :  R-+R, is an injective map, or by: 6(x,y) 
= 0([x - Yl), with 0: R+ ~ R+, 0(0) = 0, V(u, v) e (R+) 2, 0(u + v) ~< 0(u) + 0(v) [8]. 
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(2)  ml  = m2 = 1. E ~ C@C (regular representation o f  82) 
By restriction to the Euclidean (real) plane F = IR@IR, ul = y, u2 = x: 82 acts 

by reflexion with respect to the y-axis (ex = x, a x  = - x ,  ey = ay  = y). Equation 
(E) takes the form (u = (x, y), v = (x j, 3/)): 

2+2 exp[paDpZ] + 2 exp[pbD~] + exp[pcD~] + exp[pdD~] 

, 2  coshp x2 coshp x'2 
= 8 exp[p(y - y ) ] c--0~sh2p- ~ , 

(y _ 3/)2 _ (x + x ' ) ( x -  x') 
where 

a - 

¢ ( y  _ 3/)2 + (x + ~ ) 2 .  W/(y _ y,)2 + (x - xt) 2 

b = 
(y _ 3/)2 + (x + x~)(x-  x ~) 

¢ ~  _ y,)2 + (x + xa) 2. ¢ ( y  -- )/)2 + (x -- )d) 2 

C 
(y _ 3/)2 _ (x + x')  2 

(y _ y,)2 + (x + e ) 2 ,  

d = ( y  - 3 / ) 2  - ( x  - xJ) 2 

( y -  y')~ + (x - x ')  ~ 

On the x-axis (and parallel lines) we find again the distance 

x') = ; ;  invcosh [coshpx 2 coshpx'2] D & ,  
[_ cosh2pxx a J " 

Given x~> 0 and x'/> 0, when p -+ + oo, Dp(x,  x') tends to the Euclidean distance 
[x - x'[ and is equivalent to 

D p ( x , x  ~ ,-., ~ ( x -  x~)2 + ln2 

Finally, the solution of (E) on a line parallel to the y-axis (x = x0) is defined by 

I " p I y - y ' [  _ yt)2 + 4x  2 
2 + exp[pD 2] + 4exp / ( y  

+ exp Ip (y - 3//2 - 4~  D2] 
( y  y ')E+4x~ ' J  =8exp[P(Y-Y')2I"  
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W h e n  x0 -+ + oo, the solut ion of  (E) on the line to infinity is explicitly given by 

D p ( y , y ' )  = ~ l i n v c o s h [ 4  exp(p(y - y,)2) _ 3]. 

The  locat ion of  the various expressions found  for the solut ion Dp of  (E) is summar -  
ized in fig. 1 [9]. 

Let  us come back  to the chemical interpretat ion.  U p o n  a simple change of  the 
axis in R 2, the regular  representa t ion of  82 is also a pe rmuta t ion  of  coordinates  X 
and  Y such that" X = ! ( y  + x), Y = --~2(Y - x) I f  X and Y are regarded as l igand 

• V / 2  _ • 

paramete rs  at equivalent  sites of  a syrdriaetrized skeleton (the two subst i tuents  of  a 
ke tone  [3], of  a carbene [3], etc.), a pair  of  points  u ( X ,  Y )  and  au( Y, X) represents  
a molecule.  The  "gap"  Dp between two points  belonging to different pairs is inde- 
penden t  of  the points  considered• If  the t r iangular  inequali ty is satisfied in a whole  
plane,  Dp is a distance for the set of  the skeletal analogs with two equivalent  skele- 
tal sites and  real l igand parameters  (see fig. 1). 

5. C o n c l u d i n g  r e m a r k s  

Mos t  of  the preceding definit ions migh t  be extended to regular  metr ic  spaces 
wi thou t  an Eucl idean or Hermi t ian  structure [10]. A non-Eucl idean  version of  the 
theo rem [6a] could be useful in the following way. Suppose tha t  De  is a complete ly  

Y 
[y,y')= I y-y' I 

X 

/ Dp(y,y')= [(I/p) Argch[4exp(p(y-y') 2) _31~/2.~. 

. Dp(u,v) 

v 

I 
I 
i 
I 

Dp(X,X')= [(1 / p) Argch'[chpx 2 chpx' 2/ch2pxx'] ]1/2 

I 

X 

7 "  
Yo ~ Y=Y0 

Fig. 1. Lines admitting explicit solutions of eq. (E) for the representation of g2 in the Euclidean real 
plane F = IR~IR by the reflexion with respect to they-axis (ex = x, trx = - x ,  ey = try = y). The coor- 
dinates X and Y are permutated by tr and may be regarded as ligands parameters of molecules with 

two equivalent skeletal sites. 
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G-invariant distance corresponding to a pairing product Kp on an Euclidean vector 
space E. (E/G, De) is a metric space. G is realizable as a subgroup of the orthogo- 
nal group On (E). The representation of G induces representations of bigger grou,P2S 
H, On(E) ~ H ~ G. Now, neither the complete G-invariance (V(g, h) e (H - G) , 
Dc(gu, v) = De(u, v)) nor the regular G-invariance (isometry: Vg ~ HDc(gu, gv) 
= De(u, v)) is valid any longer. Therefore, the previous process leading from (E, d) 
to (E/G, De) cannot be iterated to go from (E/G, De) to (E/H, DI-I), where Dn 
would be the completely H-invariant distance on E/G (and on E itself). 

Nevertheless, such an iteration could be done if G is a normal subgroup of H 
(then, Vg~H, Da(gu, gv) = De(u, v)): when H is the direct product of two sub- 
groups G and K, two ways would be possible to get a completely H-invariant dis- 
tance extension. The first way directly gives the distance Dn  on E/H. The second 
way would proceed in two steps: first, a distance on E/G is defined. Since G is nor- 
mal in H,  the process would be valid again from the metric space (E/G, De) instead 
of (E, d): another completely H-invariant distance D~ on H = G. K would be 
obtained. Comparison of DH with D' is challenging, but even in the most non-tri- h, 
vial case H = ($2) 2, E = ~03I~ the calculation of D/~ and D~4 is not an evident 
task. 

Efforts are in progress to exhibit new discriminating pairing products, and then 
explore the question of triangular inequality of the solution of eq. (E). Due to the 
failure to prove so far that Dp is a distance [11], the differential resolution of (E) will 
be addressed in order to endow spaces E/G with a metric related to the kinetics of 
transformations between skeletal analogs [7]. 
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